Touchscreen Technologies
.
DIFFERENT TOUCHSCREEN TECHNOLORIES IN MARKET
Resistive Touchscreen:
A resistive touchscreen panel is composed of several layers, the most important of which are two thin, metallic, electrically conductive layers separated by a narrow gap. When an object, such as a finger, presses down on a point on the panel's outer surface the two metallic layers become connected at that point: the panel then behaves as a pair of voltage dividers with connected outputs. This causes a change in the electrical current, which is registered as a touch event and sent to the controller for processing.
Surface Acoustic Wave:
Surface Acoustic Wave (SAW) technology uses ultrasonic waves that pass over the touchscreen panel. When the panel is touched, a portion of the wave is absorbed. This change in the ultrasonic waves registers the position of the touch event and sends this information to the controller for processing. Surface wave touch screen panels can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the touchscreen.
Capacitive Sensing:
A capacitive touchscreen panel consists of an insulator such as glass, coated with a transparent conductor such as indium tin oxide (ITO). As the human body is also a conductor, touching the surface of the screen results in a distortion of the body's electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing.
Surface Capacitance:
In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically formed. The sensor's controller can determine the location of the touch indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling, and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial controls and kiosks.
Projected Capacitance:
Projected Capacitive Touch (PCT) technology is a capacitive technology which permits more accurate and flexible operation, by etching the conductive layer. An X-Y grid is formed either by etching a single layer to form a grid pattern of electrodes, or by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form the grid (comparable to the pixel grid found in many LCD displays).
PCT is used in a wide range of applications, including point of sale systems, smartphones, and public information kiosks. Visual Planet's ViP Interactive Foil is an example of a kiosk PCT product, where a gloved hand can register a touch on a sensor surface through a glass window. Examples of consumer devices using projected capacitive touchscreens include: LG's LG KE850 and LG KM900 Arena; Apple Inc.'s iPhone, iPod Touch and iPad; HTC's HD2, G1, and HTC Hero; Motorola's Droid; Palm Inc.'s Palm Pre and Palm Pixi; Microsoft's Zune HD; Sony's Walkman X series; Sony Ericsson's Aino; Vidalco's Edge, D1, and Jewel; the Nokia X6 phone; and Google's Nexus One.
The use of an X-Y grid permits a higher resolution than resistive technology. The greater resolution of PCT allows operation without direct contact, such that the conducting layers can be coated with further protective insulating layers, and operate even under screen protectors, or behind weather and vandal-proof glass. Depending on the implementation, an active or passive stylus can be used instead of or in addition to a finger. This is common with point of sale devices that require signature capture. Gloved fingers may or may not be sensed, depending on the implementation and gain settings. Conductive smudges and the like on the panel surface can interfere with the performance. Such conductive smudges come mostly from sticky or sweaty finger tips, especially in high humidity environments. Collected dust, which adheres to the screen due to the moisture from fingertips can also be a problem. There are two types of PCT: Self Capacitance and Mutual Capacitance.
Mutual Capacitance:
In mutual capacitive sensors, there is a capacitor at every intersection of each row and each column. A 12-by-16 array, for example, would have 192 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field which reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or stylus can be accurately tracked at the same time.
Self Capacitance:
Self capacitance sensors can have the same X-Y grid as mutual capacitance sensors, but the columns and rows operate independently. With self capacitance, the capacitive load of a finger is measured on each column or row electrode by a current meter. This method produces a stronger signal than mutual capacitance, but it is unable to resolve accurately more than one finger, which results in "ghosting", or misplaced location sensing.
Infrared:
An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. A major benefit of such a system is that it can detect essentially any input including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and point-of-sale systems which can't rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system.
Strain Gauge:
In a strain gauge configuration, also called force panel technology, the screen is spring-mounted on the four corners and strain gauges are used to determine deflection when the screen is touched. This technology has been around since the 1960s, but new advances by Vissumo and F-Origin have made the solution commercially viable. It can also measure the Z-axis and the force of a person's touch. Such screens are typically used in exposed public systems such as ticket machines due to their resistance to vandalism.
Optical Imaging:
This is a relatively modern development in touchscreen technology, in which two or more image sensors are placed around the edges (mostly the corners) of the screen. Infrared back lights are placed in the camera's field of view on the other side of the screen. A touch shows up as a shadow and each pair of cameras can then be triangulated to locate the touch or even measure the size of the touching object (see visual hull). This technology is growing in popularity, due to its scalability, versatility, and affordability, especially for larger units.
Dispersive Signal Technology:
Introduced in 2002 by 3M, this system uses sensors to detect the mechanical energy in the glass that occurs due to a touch. Complex algorithms then interpret this information and provide the actual location of the touch. The technology claims to be unaffected by dust and other outside elements, including scratches. Since there is no need for additional elements on screen, it also claims to provide excellent optical clarity. Also, since mechanical vibrations are used to detect a touch event, any object can be used to generate these events, including fingers and stylus. A downside is that after the initial touch the system cannot detect a motionless finger.
Acoustic Pulse Recognition:
This system, introduced by Tyco International's Elo division in 2006, uses piezoelectric transducers located at various positions around the screen to turn the mechanical energy of a touch (vibration) into an electronic signal. The screen hardware then uses an algorithm to determine the location of the touch based on the transducer signals. The touchscreen itself is made of ordinary glass, giving it good durability and optical clarity. It is usually able to function with scratches and dust on the screen with good accuracy. The technology is also well suited to displays that are physically larger. As with the Dispersive Signal Technology system, after the initial touch, a motionless finger cannot be detected. However, for the same reason, the touch recognition is not disrupted by any resting objects.
Coded LCD: Bidirectional Screen:
A new system that turns LCD displays into giant cameras that provide gestural control of objects on-screen was introduced by MIT Media Lab in December, 2009. Instead of an LCD, an array of pinholes is placed in front of sensors. Light passing through each pinhole strikes a small block of sensors, producing a low-resolution image. Since each pinhole image is taken from a slightly different position, all combined images provide depth information about the sensed image.
Pinholes are problematic because they allow very little light to reach the sensors, requiring impractically long exposure times. Instead of pinholes, an array of liquid crystals could work similarly but more effectively: The LCD's panel is composed of patterns of 19-by-19 blocks, each divided into a regular pattern of differently sized black-and-white rectangles. Each white area of the bi-colored pixels allows light to pass through. Background software uses 4D light fields to calculate a depth map, change the scene, and collect gesture information. The LCD alternates between mask pattern display and a normal scene display at a very high frequency/rate.
.
~~~~~~~~~~~~~~~~~~~~